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LETTER TO THE EDITOR 

The structure of gauged internal symmetry groups 

W Grimus 
Institut fiir Theoredsche Phpik Univksiet Wisn, Bolmanngasse 5, A-1090 Wen, Austria 

Received 5 January 1992 

Abstract. It is shown lhat under the usual assumptions with regard to the Lagrangian the most 
general case of a gauged inlernal symmetry group is given by G = GI x . . . G,, where the G, 
facton m either (R, f) or U(1) or compact simply connected simple Lie p u p s .  The special 
circumstances under which (R. +) appears m pointed out 

In particle physics, definitions of a gauge theory always take for granted that the gauge group 
G is compact. To be more precise; it is assumed to be either U( 1) ,or a simple compact group 
or a finite number of products of such groups. As a justification for this assumption, one 
usually quotes the theorem that non-compact Lie groups, and therefore their Lie algebras as 
well, have no finite-dimensional unitary representations apart from the trivial one [l]. This 
argument is readily extended to semisimple Lie groups: as their Lie algebras are direct sums 
of simple Lie algebras [2,3] any possible non-compact summand is represented trivially if 
one admits only a finite number of fields transforming unitarily under C in the Lagrangian. 
Therefore, the nonrcompact factors leave no trace in the theory. However, this argument is 
not quite conclusive because non-semisimple Lie groups permit unitary finitedimensional 
representations in general. A typical example is (R, +), the additive group of real numbers 
which hai continuous one-dimensional irreducible representations x -+ exphn which are 
unitary for imaginary A and non-unitary otherwise. 

The group G = (R, +) has yet another instructive feature. Namely, it possesses unitary 
representations D such that G/ker D is not compact. A generic example is 

where kerD = (0) ( p  is irrational). Thus factorizing out the kemel of a unitary 
representation does not automatically lead to a compact group and we seem to be forced 
to admit also non-compact gauge groups. However, we will see that the only possible 
non-compact factors in C/ker D with unitary D are those isomorphic to (R, +). At the 
end of this letter we will also discuss the special circumstances under which such a factor 
appears in the gauge group. 

We aie aware that in’principle the ‘compactness’ of the intemal symmetry group and 
some points made in this letter are already contained in [4]. Nevertheless, we think it is 
of interest to work out in detail the arguments leading to the structure of the gauge group 
independently of the complications introduced by representations of the Poincar.6 group and 
the properties of the S matrix. In other words, we want to discuss this problem as a clearly 
defined instructive exercise in Lie groups and algebras. 

0305-4470/93/690435+05507.50 Q 1993 IOP Publishing Lid L435 



L436 Letter to the Editor 

In the following, the intemal symmetry group will be a connected Lie group since 
all connected components of a Lie group can be reached from the component of the unit 
element by discrete transformations which have no bearing on the gauge structure of the 
theory. Actually, contact between the gauge principle and the group is only made by the 
requirement that the group be a Lie group because the Lie algebra is necessary for the 
formulation of the gauge couplings. Now we will show that under the usual assumptions 
for gauge theories, the gauge group can always be taken compact apart from possible (R, +) 
factors. 

Theorem. Basing the construction of a gauge Lagrangian on the requirement that in the 
theory only a finite number of fields appear such that the fields constitute the vector space of 
a finite-dimensional unitary representation of the gauge group, then one can always choose 
the gauge group to be of the Wpe G = GI x . . . x G,, where the Gi factors are either 
(R, +) or U(1) or compact simply connected simple Lie groups. 

To be as clear as possible, the proof will be divided into a series of steps. 
(1) We start with a connected Lie group G’ and assume that the fields in the Lagrangian 

are in a finite-dimensional unitary representation D on a complex vector space V with 
dim V = n. Then ker D is a closed subgroup of G’ and it is sufficient to consider 
Go = G’/kerD as a gauge group since kerD has no effect on the Lagrangian. Then 
Go is again a Lie group [5] and we can consider D as a representation of Go. Furthermore, 
Go is diffeomotphic to D(Go) [5] which is a subgroup of GL(V) ,  the group of linear 
transformations on V .  

(2) Now we pass over to the real Lie algebras 1: of Go and LD of D(Go) which are 
isomorphic. .CD is a representation of L which, for simplicity, we again denote. by D. 
Since D is unitary, the elements X of LD are anti-Hermitian operators, i. e. Xt  = -X, 
and we can decompose D = DI @ . . . @ Dk acting on V = VI @ . . . @ Vk into irreducible 
representations 0, acting on V.. 

(3) After these preliminaries, we want to consider the radical RD of LD, i. e. the 
largest solvable ideal of LD. To do this we are motivated by the theorem that the quotient 
of a Lie algebra by its radical is semisimple [2, 31. First we will show that the unitarity of 
LD entails that RD is Abelian. 

Since RD is a solvable Lie algebra acting on the vector space V we can apply Lie’s 
theorem [2,3] which tells us that there is a joint non-zero eigenvector VI  of all Y E RD. 
Because of Yt  = -Y the space  VI))^, i. e. the orthogonal complement of the liiear 
span of V I ,  is invariant under RD. Thus we can apply Lie’s theorem once more and find 
a second eigenvector vz I V I .  Iterating this process, a common orthogonal basis of joint 
eigenvectors of RD is constructed which means that RD is Abelian. 

(4) Now we will show that all the elements Y of RD are proportional to the unit operator 
when restricted to any of the V,(a = 1, . . . , k), i. e. 

To do this, let us fix an element Y E RD and a space Vu. Then V, can be &.omposed 
into eigenspaces W r  of Y, i. e. Yx = Apx for all x E W, and Ap # Ap) and Wp 1 WB, for 
B # B’. Since RD is Abelian, all the spaces W, are invariant under RO and since it is an 
ideal, we have 

for all X E LD. Now taking W B  E Wp and W, E W,(p # y )  we obtain 

YIVm L. (1) 

[Y, x] = Y‘ E ED 

A.P(WPlXW,) = (-YqlXw,) = (wplYXw,) 

(2) 

= (Wfll(XY + Y‘)Wy) = ( W g [ A , X w ,  + Y’W,) = A,(wpIXw,) 
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where Y'W, g W, was taken into account. (Note also that the eigenvalues of Y are 
imaginary.) We see therefore that all WO are invariant under LD. Since D, is irreducible, 
there can only be a single space WO being the entire V,. This proves the above statement. 

(5)  We have seen in (4) that the radical RD is identical'with the centre of LD. This 
allows the decomposition 

CD = Lh @ ' R D  (3) 

where Lb is semisimple and consists of all elements X E LD with Tr,X = 0 for all 
(Y = 1, . . . , k (Tr, denotes the trace being taken in the subspace V, of V) .  Consequently, 
Cb is a Lie subalgebra of su(n) and therefore compact, i.e. its Killing form is negative 
definite. 

To prove (3). we use that C D / R D  is semisimple as already mentioned in (3). A 
semisimple real or complex Lie algebra A is identical to its derived Lie algebra A' = [A, AI. 
(This can be seen e.g. in the following way: for semisimple Lie algebras the Killing 
metric is a non-singular matrix which can be used to invert the commutator relations of 
the basis elements leading to an expression of the basis elements as linear combinations of, 
commutators.) In other words, in a semisimple Lie algebra every~element can be written as 
a linear combination of Lie products. Applying this to x + RD E C D  j n D  one obtains 

or 

X = Z + Y  with Tr,Z=O(ol=l,  ..., k )  and Y E R D .  (41 

(6) Since L is isomorphic to LD equation (3) is also valid for L, i.e. L = L' fB R with 
L' semisimple and compact and R being the Abelian radical of L. Since C' = L,  e.. .@La 
%a direct sum of simple Lie algebras [ 1-31. we conclude that the universal covering group 
Go of Go is given by [ l ]  

(5) 

with G I j  being simply connected simple Lie groups. There are as many factors R in 50 as 
the dimension of R. SinE a semisimple goup is compact if and only if its Lie algebra is 
compact [I], the groups Gj ( j  = 1, . . . , s) ire compact. 

NOW we have practically completed the proof. It only remains to discuss when (R, +) 
can be curled up to U(1). Since we are consid$ng gauge theories, there is an independent 
gauge coupling constant for every factor in Gpin equation (5). (The coupling consg t s  
are independent unless there are additional symmetries connecting equal factors in Go.) 
Furthermore, for every Cj ( j  = 1, ..., s) one has to choose an orthonormal basis of 
generatoK[X,} in LD, i. e. Tr(X,Xb) = -&ob, and write down the usual gauge couplings. 
In RD we have to take a basis of linearly independent generators Y, (a = 1,. . . , r )  each 
associated with a gauge field A ,  and a coupling constant g,. From equation (1) and from 
the form of Lb (equation (3)) it is clear that Tr(X.Yb) = 0 for all a, b. The generators of 
RD do not a priori form an orthonormal set. However, by an orthogonal rotation R on the 
Abelian gauge fields A, = Cb R,hAb one c& obtain such a set of generators by 

- 
Go=@,+) x ... x (R, +) x GI, x ... x GI, 

(I b 
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with 

The requirement 

Tr(YiYL) = -Job 

then leads to 

(7) 

R'MR = -diag(g';,...,gJ ,2 

with 

Mob = goghTr(yoyb). (8) 

The r x r matrix M is a symmetric negative definite matrix (det M # 0 since the generators 
are linearly independent) and can therefore be diagonalized by the rotation matrix R giving 
the new,coupling constants g;. Thus one can always choose an orthonormal set of generators 
for the entire Lie algebra LD. 

In constructing the gauge Lagrangian, the generators Yi E 'R.D are diagonal matrices. 
If the matrix Yi/Yi,, has only rational elements then one can consider x + exp(xYi) as 
a representation of U(1) 2 (R, +)/uZ with a suitable number U E R. If this is not the 
case we have to keep the non-compact factor (R, +). Possible factors of this type are the 
only source of non-compacmess in the gauge group G. Thus, the difference between Go 
and G of the theorem is only given by the replacement of (R, +) by U(1) wherever, this 
is possible. 

Let us dicuss in more detail the case where not all ratios of matrix elements in YL are 
rational. For simplicity we assume that there are only two sets of incommensurable mahix 
elements. Thus YL is ,given by 

YL = i(ulT1 + u2T2) (9) 

with UI, uz E R, U ~ / U Z  being irrational and diagonal matrices TI, T2 having only rational 
entries. Since a gauge Lagrangian is a polynomial in the fields it must be separately invariant 
under the two global U(1)  groups generated by TI and T2, respectively. As a gauge group, 
however, there is a single (R, +) with a single gauge field. The case of equation (9) is rather 
unusual and amounts to having some particles with rational charges and others with irrational 
charges with respect to the same conserved current. Such a situation can never occur if e. g. 
one has grand unification in mind. The reason is that then G would be a subgroup of a simple 
gauge group and the elements of the centre of L would be part of the Carran subalgebra 
of the grand unification group. In an irreducible representation of a simple (or semisimple) 
group the co-roots of simple roots are represented by diagonal matrices with integer entries 
[ l ,  31. Thus with the GramSchmidt orthogonalization procedure applied to these generators 
one can construct an orthonormal basis in the representation of the Carran subalgebra with 
rational entries apart from normalization factors. That is, all charges occurring in a matrix 
Yi have rational ratios; hence, if the normalization factor is irrational, it can be put into 
the gauge coupling constant at energies below the grand unification scale where G is the 
relevant gauge group. 
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Finally we would like to mention that we could have made a short-cut in our proof by 
using the following theorem on Lie algebras [?.I:, If a Lie algebra of operators on a finite- 
dimensional vector space is completely reducible then it is the direct sum of a semisimple 
ideal and its centre. In addition, all elements of the centre are diagonalizable [Z]. ‘This 
theorem is applicable in our case since a unitary representation is completely reducible. It 
would have summarized most of the arguments of steps 3 to 5. However, we think it would 
have made the discussion less transparent. 

The author thanks H Urbantke and G Ecker for valuable discussions. 
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